Reprint

ISSN 0973-9424

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND ENGINEERING APPLICATIONS

(IJMSEA)

www.ascent-journals.com

International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 17 No. I (June, 2023), pp. 1-7

ON RADIAL SYMMETRIC *n*-SIGRAPHS

HARSHAVARDHANA¹, VIJAY² AND SOMASHEKAR³

¹ Department of Mathematics,
Government First Grade College for Women, Holenarasipur-573 211, India
² Department of Mathematics,
Government Science College, Hassan-573 201, India
³ Department of Mathematics,
Government First Grade College, Nanjangud-571 301, India

Abstract

An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}$, $1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function. In this paper, we introduced a new notion radial symmetric *n*-sigraph of a symmetric *n*-sigraph and its properties are obtained. Also, we obtained the structural characterization of radial symmetric *n*-signed graphs.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Key Words and Phrases : Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Radial symmetric n-sigraphs, Complementation.

2000 AMS Subject Classification : 05C22.

© http://www.ascent-journals.com

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function.

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [10], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]):

Definition. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

- (i) S_n is *identity balanced* (or *i-balanced*), if product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and
- (ii) S_n is balanced, if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [10].

Proposition 1(*E. Sampathkumar et al.* [10]) : An n-sigraph $S_n = (G, \sigma)$ is ibalanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with v. Complement of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}$, $\sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 1 [12]. Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$.

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n .

We make use of the following known result (see [10]).

Proposition 2 (*E. Sampathkumar et al.* [10]) : Given a graph *G*, any two *n*-sigraphs with *G* as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S defined as follows: each vertex $v \in V$, $\mu(v)$ is the product of the *n*-tuples on the edges incident at v. Complement of S is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma')$, where for any edge $e = uv \in \overline{G}$, $\sigma'(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 1.

2. Radial *n*-Sigraph of an *n*-Sigraph

Kathiresan and Marimuthu [2] introduced a new type of graph called radial graph. Two vertices of a graph Γ are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph G, denoted by R(G), has the vertex set as in G and two vertices are adjacent in R(G) if, and only if, they are radial in G. If G is disconnected, then two vertices are adjacent in R(G) if they belong to different components of G. A graph G is called a *radial graph* if $R(G') = \Gamma$ for some graph G'.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of radial graphs to n-sigraphs as follows:

The radial n-sigraph $R(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is R(G) and the n-tuple of any edge uv is $R(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called radial n-sigraph, if $S_n \cong R(S'_n)$ for some n-sigraph S'_n . The following result indicates the limitations of the notion $R(S_n)$ as introduced above, since the entire class of *i*-unbalanced n-sigraphs is forbidden to be radial n-sigraphs.

Propositiion 3: For any *n*-sigraph $S_n = (G, \sigma)$, its radial *n*-sigraph $R(S_n)$ is *i*-balanced.

Proof: Since the *n*-tuple of any edge uv in $R(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Proposition 1, $R(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated radial *n*-sigraph $R(S_n)$ of S_n is defined as follows:

$$(R)^{0}(S_{n}) = S_{n}, (R)k(S_{n}) = R((R)^{k-1}(S_{n}))$$

Corollary 4: For any *n*-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(R)^k(S_n)$ is *i*-balanced.

The following result characterize *n*-sigraphs which are radial *n*-sigraphs.

Theorem 5: An *n*-sigraph $S_n = (G, \sigma)$ is a radial *n*-sigraph if, and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph G is a radial graph.

Proof: Suppose that S_n is *i*-balanced and G is a R(G). Then there exists a graph H such that $R(H) \cong G$. Since S_n is *i*-balanced, by Proposition 1, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the *n*-marking of the corresponding vertex in G. Then clearly, $R(S'_n) \cong S_n$. Hence S_n is a radial *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a radial *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $R(S'_n) \cong S_n$. Hence G is the R(G) of H and by Proposition 3, S_n is *i*-balanced.

The following result characterizes the n-sigraphs which are isomorphic to radial n-sigraphs. In case of graphs the following result is due to Kathiresan and Marimuthu [3]:

Theorem 6: Let G = (V, E) be a graph of order *n*. Then $R(G) \cong G$ if, and only if, *G* is a connected graph with r(G) = d(G) = 1 or r(G) = 1 and d(G) = 2.

Theorem 7: For any *n*-sigraph $S_n = (G, \sigma)$, the radial *n*-sigraph $R(S_n)$ and S_n are switching equivalent if, and only if, S_n is *i*-balanced *n*-sigraph and the underlying Gwith r(G) = d(G) = 1 or r(G) = 1 and d(G) = 2.

Proof: Suppose $S_n \sim R(S_n)$. This implies, $G \cong R(G)$ and hence G is a graph with r(G) = d(G) = 1 or r(G) = 1 and d(G) = 2, Proposition 3 implies that $R(S_n)$ is *i*-balanced and hence if S_n is *i*-unbalanced and its $R(S_n)$ being *i*-balanced can not be switching equivalent to S_n in accordance with Proposition 2. Therefore, S_n must be *i*-balanced.

Conversely, suppose that S_n is an *i*-balanced *n*-sigraph and its undrelying G with r(G) = d(G) = 1 or r(G) = 1 and d(G) = 2. Then, since $R(S_n)$ is *i*-balanced as per Proposition 3 and since $G \cong R(G)$, the result follows from Proposition 2 again. In [3], the authors characterize the graphs for which $R(G) \cong \overline{G}$.

Theorem 8: Let G be a graph of order n. Then $R(G) \cong \overline{G}$ if, and only if, either $S_2(G) = V(G)$ or G is disconnected in which each component is complete.

In view of the above result, we have the following result that characterizes the family of *n*-sigraphs satisfies $R(S_n) \sim \overline{S_n}$.

Theorem 9: For any *n*-sigraph $S_n = (G, \sigma)$, $R(S_n) \sim \overline{S_n}$ if, and only if, either $S_2(G) = V(G)$ or G is disconnected in which each component is complete.

Proof: Suppose that $R(S_n) \sim \overline{S_n}$. Then clearly, $R(G) \cong \overline{G}$. Hence by Theorem 8, G is either $S_2(G) = V(G)$ or disconnected in which each component is complete.

Conversely, suppose that S_n is an *n*-sigraph whose underlying graph is either $S_2(G) = V(G)$ or G is disconnected in which each component is complete. Then by Theorem 8, $R(G) \cong \overline{G}$. Since for any *n*-sigraph S_n , both $R(S_n)$ and $\overline{S_n}$ are *i*-balanced, the result follows by Proposition 2.

The following result due to Kathiresan and Marimuthu [3] gives a characterization of graphs for which $R(G) \sim R(\overline{G})$.

Theorem 10: Let G be a graph. Then $R(G) \sim R(\overline{G})$ if, and only if, G satisfies any one the following conditions:

i. G or \overline{G} is complete.

ii. G or \overline{G} is disconnected with each component complete out of which one is an isolated vertex.

We now give a characterization of n-sigraphs whose radial n-sigraphs are switching equivalent to their radial n-sigraph of complementary n-sigraphs.

Theorem 11: For any *n*-sigraph $S_n = (G, \sigma)$, $R(S_n) \sim R(\overline{S_n})$ if, and only if, G satisfies the conditions of Theorem 10.

Theorem 12: For any two S_n and S'_n with the same underlying graph, their radial *n*-sigraphs are switching equivalent.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $R(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $R(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Proposition 13: Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then, for any $m \in H_n$, if R(G) is bipartite then $(R(S_n))^m$ is *i*-balanced.

Proof: Since, by Proposition 3, $R(S_n)$ is *i*-balanced, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $R(S_n)$ whose k^{th} co-ordinate are - is even. Also, since R(G) is bipartite, all cycles have even length; thus, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $R(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(R(S_n))^t$ is *i*-balanced. \Box

References

- [1] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).
- [2] Kathiresan K. M. and Marimuthu G., A study on radial graphs, Ars Combin., 96 (2010), 353-360.
- [3] Kathiresan K. M. and Marimuthu G., Further results on radial graphs, Discuss. Math. Graph Theory, 30(1) (2010), 75-83.
- [4] Lokesha V., Reddy P. S. K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
- [5] Palathingal J. J. and Aparna Lakshmanan S., Gallai and anti-Gallai graph operators, Electron. Notes Discrete Math., 63(2017), 447-453.

- [6] Rangarajan R. and Reddy P. S. K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
- [7] Rangarajan R., Reddy P. S. K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
 R.
- [8] Rangarajan R., Reddy P. S. K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 & 2) (2009), 1-12.
- [9] Rangarajan R., Reddy P. S. K. and Soner N. D., mth Power Symmetric n-Sigraphs, Italian Journal of Pure & Applied Mathematics, 29 (2012), 87-92.
- [10] Sampathkumar E., Reddy P. S. K., and Subramanya M. S., Jump symmetric *n*-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
- [11] SampathkumarE., Reddy P. S. K., and Subramanya M. S., The Line *n*-sigraph of a symmetric *n*-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
- [12] Reddy P. S. K. and Prashanth B., Switching equivalence in symmetric nsigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
- [13] Reddy P. S. K., Vijay S. and Prashanth B., The edge C_4 *n*-sigraph of a symmetric *n*-sigraph, Int. Journal of Math. Sci. & Engg. Appls., 3(2) (2009), 21-27.
- [14] Reddy P. S. K., V. Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
- [15] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
- [16] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.
- [17] Reddy P. S. K., Prashanth B. and Kavita S. Permi, A Note on Switching in Symmetric *n*-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
- [18] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
- [19] Reddy P. Siva Kota, Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
- [20] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
- [21] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
- [22] Reddy P. S. K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. & Engg. Appls., 10(2) (2016), 161-168.