International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 17 No. I (June, 2023), pp. 1-7

ON RADIAL SYMMETRIC n-SIGRAPHS

HARSHAVARDHANA ${ }^{1}$, VIJAY ${ }^{2}$ AND SOMASHEKAR ${ }^{3}$

${ }^{1}$ Department of Mathematics, Government First Grade College for Women, Holenarasipur-573 211, India
${ }^{2}$ Department of Mathematics, Government Science College, Hassan-573 201, India
${ }^{3}$ Department of Mathematics, Government First Grade College, Nanjangud-571 301, India

Abstract

An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function. In this paper, we introduced a new notion radial symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterization of radial symmetric n-signed graphs.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Key Words and Phrases : Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Radial symmetric n-sigraphs, Complementation.
2000 AMS Subject Classification : 05C22.
© http: //www.ascent-journals.com

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ $\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.

In this paper by an n-tuple/n-sigraph $/ n$-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.
An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.
Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.
In [10], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]):
Definition. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [10].
Proposition 1(E. Sampathkumar et al. [10]) : An n-sigraph $S_{n}=(G, \sigma)$ is ibalanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.
Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. Complement of S_{n} is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge $e=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Proposition 1 [12].

In [10], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [4,7-9, 12-22]
Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.
Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.
Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.
We make use of the following known result (see [10]).
Proposition 2 (E. Sampathkumar et al. [10]) : Given a graph G, any two n sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S defined as follows: each vertex $v \in V, \mu(v)$ is the product of the n-tuples on the edges incident at v. Complement of S is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{\prime}\right)$, where for any edge $e=u v \in \bar{G}$, $\sigma^{\prime}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Proposition 1.

2. Radial n-Sigraph of an n-Sigraph

Kathiresan and Marimuthu [2] introduced a new type of graph called radial graph. Two vertices of a graph Γ are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph G, denoted by $R(G)$, has the vertex set as in G and two vertices are adjacent in $R(G)$ if, and only if, they are radial in G. If G is disconnected, then two vertices are adjacent in $R(G)$ if they belong to different components of G. A graph G is called a radial graph if $R\left(G^{\prime}\right)=\Gamma$ for some
graph G^{\prime}.
Motivated by the existing definition of complement of an n-sigraph, we extend the notion of radial graphs to n-sigraphs as follows:

The radial n-sigraph $R\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $R(G)$ and the n-tuple of any edge $u v$ is $R\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called radial n-sigraph, if $S_{n} \cong R\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion $R\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be radial n-sigraphs.
Proposition 3: For any n-sigraph $S_{n}=(G, \sigma)$, its radial n-sigraph $R\left(S_{n}\right)$ is i balanced.

Proof : Since the n-tuple of any edge $u v$ in $R\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Proposition $1, R\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{\text {th }}$ iterated radial n-sigraph $R\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
(R)^{0}\left(S_{n}\right)=S_{n},(R) k\left(S_{n}\right)=R\left((R)^{k-1}\left(S_{n}\right)\right)
$$

Corollary 4 : For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer $k,(R)^{k}\left(S_{n}\right)$ is i-balanced.
The following result characterize n-sigraphs which are radial n-sigraphs.
Theorem 5: An n-sigraph $S_{n}=(G, \sigma)$ is a radial n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a radial graph.

Proof: Suppose that S_{n} is i-balanced and G is a $R(G)$. Then there exists a graph H such that $R(H) \cong G$. Since S_{n} is i-balanced, by Proposition 1, there exists an n marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $R\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is a radial n-sigraph. Conversely, suppose that $S_{n}=(G, \sigma)$ is a radial n-sigraph. Then there exists an n sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $R\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $R(G)$ of H and by Proposition 3, S_{n} is i-balanced.

The following result characterizes the n-sigraphs which are isomorphic to radial n sigraphs. In case of graphs the following result is due to Kathiresan and Marimuthu [3]

Theorem 6 : Let $G=(V, E)$ be a graph of order n. Then $R(G) \cong G$ if, and only if, G is a connected graph with $r(G)=d(G)=1$ or $r(G)=1$ and $d(G)=2$.
Theorem 7: For any n-sigraph $S_{n}=(G, \sigma)$, the radial n-sigraph $R\left(S_{n}\right)$ and S_{n} are switching equivalent if, and only if, S_{n} is i-balanced n-sigraph and the underlying G with $r(G)=d(G)=1$ or $r(G)=1$ and $d(G)=2$.
Proof : Suppose $S_{n} \sim R\left(S_{n}\right)$. This implies, $G \cong R(G)$ and hence G is a graph with $r(G)=d(G)=1$ or $r(G)=1$ and $d(G)=2$, Proposition 3 implies that $R\left(S_{n}\right)$ is i-balanced and hence if S_{n} is i-unbalanced and its $R\left(S_{n}\right)$ being i-balanced can not be switching equivalent to S_{n} in accordance with Proposition 2. Therefore, S_{n} must be i-balanced.

Conversely, suppose that S_{n} is an i-balanced n-sigraph and its undrelying G with $r(G)=$ $d(G)=1$ or $r(G)=1$ and $d(G)=2$. Then, since $R\left(S_{n}\right)$ is i-balanced as per Proposition 3 and since $G \cong R(G)$, the result follows from Proposition 2 again.
In [3], the authors characterize the graphs for which $R(G) \cong \bar{G}$.
Theorem 8: Let G be a graph of order n. Then $R(G) \cong \bar{G}$ if, and only if, either $S_{2}(G)=V(G)$ or G is disconnected in which each component is complete.

In view of the above result, we have the following result that characterizes the family of n-sigraphs satisfies $R\left(S_{n}\right) \sim \overline{S_{n}}$.
Theorem 9 : For any n-sigraph $S_{n}=(G, \sigma), R\left(S_{n}\right) \sim \overline{S_{n}}$ if, and only if, either $S_{2}(G)=V(G)$ or G is disconnected in which each component is complete.
Proof : Suppose that $R\left(S_{n}\right) \sim \overline{S_{n}}$. Then clearly, $R(G) \cong \bar{G}$. Hence by Theorem $8, G$ is either $S_{2}(G)=V(G)$ or disconnected in which each component is complete.
Conversely, suppose that S_{n} is an n-sigraph whose underlying graph is either $S_{2}(G)=$ $V(G)$ or G is disconnected in which each component is complete. Then by Theorem 8, $R(G) \cong \bar{G}$. Since for any n-sigraph S_{n}, both $R\left(S_{n}\right)$ and $\overline{S_{n}}$ are i-balanced, the result follows by Proposition 2.

The following result due to Kathiresan and Marimuthu [3] gives a characterization of graphs for which $R(G) \sim R(\bar{G})$.
Theorem 10: Let G be a graph. Then $R(G) \sim R(\bar{G})$ if, and only if, G satisfies any one the following conditions:
i. G or \bar{G} is complete.
ii. G or \bar{G} is disconnected with each component complete out of which one is an isolated vertex.

We now give a characterization of n-sigraphs whose radial n-sigraphs are switching equivalent to their radial n-sigraph of complementary n-sigraphs.
Theorem 11 : For any n-sigraph $S_{n}=(G, \sigma), R\left(S_{n}\right) \sim R\left(\overline{S_{n}}\right)$ if, and only if, G satisfies the conditions of Theorem 10.
Theorem 12: For any two S_{n} and S_{n}^{\prime} with the same underlying graph, their radial n-sigraphs are switching equivalent.
For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.
For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.
For an n-sigraph $S_{n}=(G, \sigma)$, the $R\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $R\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.
Proposition 13 : Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $R(G)$ is bipartite then $\left(R\left(S_{n}\right)\right)^{m}$ is i-balanced.
Proof: Since, by Proposition 3, $R\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $R\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are - is even. Also, since $R(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $R\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(R\left(S_{n}\right)\right)^{t}$ is i-balanced.

References

[1] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).
[2] Kathiresan K. M. and Marimuthu G., A study on radial graphs, Ars Combin., 96 (2010), 353-360.
[3] Kathiresan K. M. and Marimuthu G., Further results on radial graphs, Discuss. Math. Graph Theory, 30(1) (2010), 75-83.
[4] Lokesha V., Reddy P. S. K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[5] Palathingal J. J. and Aparna Lakshmanan S., Gallai and anti-Gallai graph operators, Electron. Notes Discrete Math., 63(2017), 447-453.
[6] Rangarajan R. and Reddy P. S. K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[7] Rangarajan R., Reddy P. S. K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.
[8] Rangarajan R., Reddy P. S. K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[9] Rangarajan R., Reddy P. S. K. and Soner N. D., $m^{\text {th }}$ Power Symmetric n Sigraphs, Italian Journal of Pure \& Applied Mathematics, 29 (2012), 87-92.
[10] Sampathkumar E., Reddy P. S. K., and Subramanya M. S., Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[11] SampathkumarE., Reddy P. S. K., and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[12] Reddy P. S. K. and Prashanth B., Switching equivalence in symmetric n -sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[13] Reddy P. S. K., Vijay S. and Prashanth B., The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009), 21-27.
[14] Reddy P. S. K., V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[15] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[16] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011), 95-101.
[17] Reddy P. S. K., Prashanth B. and Kavita S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
[18] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[19] Reddy P. Siva Kota, Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[20] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[21] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95101.
[22] Reddy P. S. K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.

